

NFAs vs. DFAs

- NFAs can be constructed from DFAs using transitions:
 - Called NFA-λ
 - Suppose M₁ accepts L₁, M₂ accepts L₂
 - Then an NFA can be constructed that accepts:
 - $\circ L_1 U L_2$ (union)
 - L₁L₂ (concatenation)
 - L₁* (Kleene star)

CLOSURE PROPERTIES OF NFA-AS

NFA TO DFA CONVERSION

DFA vs NFA

- Deterministic vs nondeterministic
 - For every nondeterministic automata, there is an equivalent deterministic automata
 - Finite acceptors are equivalent iff they both accept the same language

$$L(M_1) = L(M_2)$$

DFA vs NFA

- Deterministic vs nondeterministic
 - In DFA, label resultant state as a set of states
 - {q1, q2, q3,...}
 - For a set of |Q| states, there are exactly 2^Q subsets
 - Finite number of states

REMOVING NONDETERMINISM

By simulating all moves of an NFA-λ in parallel using a DFA.

• λ -closure of a state is the set of states reachable using only the λ -transitions.

NFA-^

$$t(q1,a) = \{p1, p2, p3, p4, p5\}$$

$\Lambda - CLOSURE$

Selected λ closures

 q_1 : $\{q_1, q_2\}$

 p_1 : { p_1 , p_2 , p_3 }

 q_2 : $\{q_2\}$

EQUIVALENCE CONSTRUCTION

- Given an NFA- λ M₁, construct a DFA M₂ such that $\mathcal{L}(M) = \mathcal{L}(DM)$.
- Observe that
 - A node of the DFA = Set of nodes of NFA-λ
 - Transition of the DFA =
 Transition among set of nodes of NFA- λ

Special States to Identify

Start state of DFA =

 λ - $closure(\{q_0\})$

Final/Accepting state of DFA =

All subsets of states of NFA- λ that contain an accepting state of the NFA- λ

Dead state of DFA = ϕ

EXAMPLE

EXAMPLE

- Identify λ-closures
 - q_0 : $\{q_0\}$
 - q_1 : $\{q_1\}$
 - q_2 : { q_1, q_2 }

EXAMPLE

Identify transitions

- Start with λ-closure of start state
- {q₀}: Where can you go on each input?
 - a: $\{q_0, q_1, q_2\}$
 - So, $\{q_0, q_1, q_2\}$ is a state in the DFA
 - b, c: Nowhere, so {Φ} is in the DFA
 - Next slide...
- Next, do the same for {q₀,q₁,q₂} and {Φ}
 - Find destinations from any node in the set for each of the three alphabet symbols
 - Subsequent slide...

All steps from $\{q_0\}$

NFA vs. DFA

All steps from $\{q_0, q_1, q_2\}$

NFA vs. DFA

All steps from $\{q_1\}$ and $\{q_1, q_2\}$

EQUIVALENT DFA

NFA vs. DFA

Theorem: Given any NFA N, then there exists a DFA D such that N is equivalent to D

- Proven by constructing a general NFA and showing that the closure exists among the possible DFA states P(Q)
 - Every possible transition goes to an element of P(Q)

LIMITATIONS OF FINITE AUTOMATA

- Obvious: Can only accept languages that can be represented in finite memory!
- Can this language be represented with a FA?
 - $L(M)=(a^{i}b^{i} | i \le n)$
- Our How about this one?
 - $L(M)=(a^ib^i | i > 0)$

EXERCISE: CONVERT THIS NFA

